Sample inference script for exported torchscript image classifier
The following sample code should be run from the export directory:
Hello, thank you for using the code provided by Hasty. Please note that some code blocks might not be 100% complete and ready to be run as is. This is done intentionally as we focus on implementing only the most challenging parts that might be tough to pick up from scratch. View our code block as a LEGO block - you can’t use it as a standalone solution, but you can take it and add to your system to complement it. If you have questions about using the tool, please get in touch with us to get direct help from the Hasty team.
import torch
import numpy as np
from PIL import Image
import json
with open('class_mapping.json') as data:
mappings = json.load(data)
class_mapping = {item['model_idx']: item['class_name'] for item in mappings}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.jit.load('model.pt').to(device)
image_path = '/path/to/your/image'
image = Image.open(image_path)
# Transform your image if the config.yaml shows
# you used any image transforms for validation data
image = np.array(image)
# Convert to torch tensor
x = torch.from_numpy(image).to(device)
with torch.no_grad():
# Convert to channels first, add batch dimension, convert to float datatype
x = x.permute(2, 0, 1).unsqueeze(dim=0).float()
y = model(x)
# if model is classifier:
y = y.argmax(dim=1).squeeze().item()
predicted_class = class_mapping[y]
print("Predicted class for image:", predicted_class)
For 80% of vision AI teams, data is the bottleneck. Not with us.