We shall make use of Adam optimization to briefly explain the epsilon coefficient. For the Adam optimizer, we know that the first and second moments are calculated via;
$$V_{dw}=\beta1 \cdot V{dw}+(1-\beta1)\cdot \partial w\S{dw}=\beta2 S{dw}+(1-\beta_2)\cdot \partial w^2$$
$$\partial w$$ is the derivative of the loss function with respect to a parameter.
$$V{dw}$$ is the running average of the decaying gradients(momentum term) and $$S{dw}$$ is the decaying average of the gradients.
And the parameter updates are done as;
$$theta_{k+1}=\thetak-\eta \cdot \frac{V{dw}^{corrected}}{\sqrt{S_{dw}^{corrected}}+\epsilon}$$
The epsilon in the aforementioned update is the epsilon coefficient.
Note that when the bias-corrected $$S_{dw}$$ gets close to zero, the denominator is undefined. Hence, the update is arbitrary. To rectify this, we use a small epsilon such that it stabilizes this numeric.
The standard value of the epsilon is 1e-08.
import torch
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random Tensors to hold inputs and outputs.
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),
torch.nn.ReLU(),
torch.nn.Linear(H, D_out),
)
loss_fn = torch.nn.MSELoss(reduction='sum')
# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use Adam; the optim package contains many other
# optimization algorithms. The first argument to the Adam constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,amsgrad=true,eps=1e-08)
#setting the amsgrad to be true
#setting the epsilon to be 1e-08
#note that we are using Adam in our example
for t in range(500):
# Forward pass: compute predicted y by passing x to the model.
y_pred = model(x)
# Compute and print loss.
loss = loss_fn(y_pred, y)
print(t, loss.item())
# Before the backward pass, use the optimizer object to zero all of the
# gradients for the Tensors it will update (which are the learnable weights
# of the model)
optimizer.zero_grad()
# Backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# Calling the step function on an Optimizer makes an update to its parameters
optimizer.step()
Only 13% of vision AI projects make it to production, with Hasty we boost that number to 100%.